выпукло-вогнутый - significado y definición. Qué es выпукло-вогнутый
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es выпукло-вогнутый - definición

ИЗДЕЛИЕ ИЗ ПРОЗРАЧНОГО МАТЕРИАЛА ДЛЯ РАССЕИВАНИЯ ИЛИ КОНЦЕНТРИРОВАНИЯ СВЕТА
Линза (оптика); Двояковогнутая линза; Двояковыпуклая линза; Плоско-выпуклая линза; Вогнуто-выпуклая линза; Плоско-вогнутая линза; Выпукло-вогнутая линза; Оптический центр; Тонкая линза
  • Двояковыпуклая линза
  • Сходящиеся лучи слева от линзы являются лучами, отраженными от поверхности линзы, и не связаны с положением мнимого фокуса
  • Линзы контактные
  • Растение, видимое через двояковыпуклую линзу
  • Золотые Ворота]]
  • волнового фронта]]. Здесь плоский волновой фронт становится сферическим при прохождении через линзу
  • 500px
  • 500px
  • Изображения чёрных букв через тонкую выпуклую линзу с фокусным расстоянием ''f'' (красным цветом). Показаны лучи для букв E, I и K (синим, зелёным и оранжевым соответственно). Изображение буквы E (находящейся на расстоянии 2''f'') действительное и перевернутое, такого же размера. Изображение I (на ''f'') — в бесконечности. Изображение К (на ''f''/2) мнимое, прямое, увеличенное в 2 раза

выпукло-вогнутый      
прил.
Имеющий одну выпуклую, а другую вогнутую сторону.
ЛИНЗА         
в геологии - чечевицеобразная форма залегания горных пород и полезных ископаемых; округлое или овальное тело с уменьшением мощности к краям.
---
(нем. Linse, от лат. lens - чечевица), в оптике - прозрачное тело, ограниченное выпуклыми или вогнутыми поверхностями (одна из поверхностей может быть плоской) и преобразующее форму светового пучка. Линзы бывают собирающие (положительные) и рассеивающие (отрицательные) (рисунок). Линзы для видимого света обычно изготовляют из стекла; для ультрафиолетового излучения - из кварца, флюорита, фторида лития и др.; для инфракрасного излучения - из кремния, германия, флюорита, фторида лития и др.
Линза         
I Ли́нза (нем. Linse, от лат. lens - чечевица)

прозрачное тело, ограниченное двумя поверхностями, преломляющими световые лучи; является одним из основных элементов оптических систем (См. Оптические системы). Наиболее употребительны Л., обе поверхности которых обладают общей осью симметрии, а из них - Л. со сферическими поверхностями, изготовление которых наиболее просто. Менее распространены Л. с двумя взаимно перпендикулярными плоскостями симметрии; их поверхности цилиндрические или тороидальные. Таковы Л. в очках, предписываемых при астигматизме глаза (См. Астигматизм глаза), Л. для анаморфотных насадок (См. Анаморфотная насадка) и т. д.

Материалом для Л. чаще всего служит оптическое и органическое стекло. Специальные Л., предназначенные для работы в ультрафиолетовой области спектра, изготовляют из кристаллов кварца, флюорита, фтористого лития и др., в инфракрасной - из особых сортов стекла, кремния, германия, флюорита, фтористого лития, йодистого цезия и др.

Описывая оптические свойства осесимметричной Л., обычно рассматривают лучи, падающие на неё под малым углом к оси, составляющие т. н. Параксиальный пучок лучей. Действие Л. на эти лучи определяется положением её кардинальных точек (См. Кардинальные точки) - т. н. главных точек Н и H', в которых пересекаются с осью главные плоскости Л., а также переднего и заднего главных фокусов (См. Главный фокус) F и F' (рис. 1). Отрезки HF = f и H'F' = f' наз. фокусными расстояниями Л. (в случае, когда среды, с которыми граничит Л., обладают одинаковыми показателями преломления, f всегда равно - f'); точки О пересечения поверхностей Л. с осью называются её вершинами, расстояние между вершинами - толщиной Л.

Геометрические величины, характеризующие отдельные Л. и системы Л., принято считать положительными, если направления соответствующих отрезков совпадают с направлением лучей света На рис. 1 лучи проходят через Л. слева направо, и так же ориентирован отрезок H'F'. Поэтому здесь f' > 0, a f < 0.

Преломления на поверхностях Л. изменяют направления падающих на неё лучей. Если Л. преобразует параллельный пучок в сходящийся, её называют собирающей; после прохождения рассеивающей Л. параллельный пучок превращается в расходящийся. В главном фокусе F' собирающей Л. пересекаются лучи, которые до преломления были параллельны её оси. Для такой Л. f' всегда положительно. В рассеивающей Л. F' - точка пересечения не самих лучей, а их воображаемых продолжений в сторону, противоположную направлению распространения света. Поэтому для них всегда f < 0. В частном случае тонких Л. внешнее отличие собирающих и рассеивающих Л. заключается в том, что у первых толщина краев меньше толщины в центре Л., у вторых - наоборот.

Мерой преломляющего действия Л. служит её оптическая сила Ф - величина, обратная фокусному расстоянию (Ф = 1/f') и измеряемая в диоптриях (м-1). У собирающих Л. Ф > 0, поэтому их ещё именуют положительными. Рассеивающие Л. (Ф < 0) называются отрицательными. Употребляют и Л. с Ф = 0 - т. н. афокальные Л. (их фокусное расстояние равно бесконечности). Они не собирают и не рассеивают лучей, но создают аберрации (см. Аберрации оптических систем) и применяются в зеркально-линзовых (а иногда и в линзовых) Объективах как компенсаторы аберраций.

Л., ограниченная сферическими поверхностями. Все параметры, определяющие оптические свойства такой Л., могут быть выражены через радиусы кривизны r1 и r2 её поверхностей, толщину Л. по оси d и показатель преломления её материала n. Например, оптическая сила и фокусное расстояние Л. задаются соотношением

(1)

Радиусы r1 и r2 считаются положительными, если направление от вершины Л. до центра соответствующей поверхности совпадает с направлением лучей (на рис. 1 r1 > 0, r2 < 0). Следует оговорить, что формула (1) верна лишь применительно к параксиальным лучам. При одной и той же оптической силе и том же материале форма Л. может быть различной. На рис. 2 показано несколько Л. одинаковой оптической силы и различной формы. Первые три - положительны, последние три - отрицательны. Л. называется тонкой, если её толщина d мала по сравнению с r1 и r2. Достаточно точное выражение для оптической силы такой Л. получают, отбрасывая второй член в (1).

Положение главных плоскостей Л. относительно её вершин тоже можно определить, зная r1, r2, n и d. Расстояние между главными плоскостями мало зависит от формы и оптической силы Л. и приблизительно равно . В случае тонкой Л. это расстояние мало и практически можно считать, что главные плоскости совпадают.

Когда положение кардинальных точек известно, положение изображения оптического (См. Изображение оптическое) точки, даваемого Л. (см. рис. 1), определяется формулами:

x·x' = f·f' = -f'2,

, (2)

где V - линейное увеличение Л. (см. Увеличение оптическое), l и l' - расстояния от точки и её изображения до оси (положительные, если они расположены выше оси), х - расстояние от переднего фокуса до точки, x' - расстояние от заднего фокуса до изображения. Если t и t' - расстояния от главных точек до плоскостей предмета и изображения соответственно, то (т. к. х = t - f, x' = t' - f'):

f'/t' + f/t = 1 (3)

или

1/t' - 1/t = 1/f'.

В тонких Л. t и f можно отсчитывать от соответствующих поверхностей Л.

Из (2) и (3) следует, что по мере приближения изображаемой точки (действительного источника) к фокусу Л. расстояние от изображения до Л. увеличивается; собирающая Л. даёт действительное изображение точки в тех случаях, когда эта точка расположена перед фокусом; если точка расположена между фокусом и Л., её изображение будет мнимым; рассеивающая Л. всегда даёт мнимое изображение действительной светящейся точки (подробнее см. в ст. Изображение оптическое).

Лит.: Элементарный учебник физики, под ред. Г. С. Ландсберга, 6 изд., т. 3, М., 1970; Тудоровский А. И., Теория оптических приборов, 2 изд., т. 1, М. - Л., 1949.

Г. Г. Слюсарев.

Рис. 1 к ст. Линза.

Рис. 2 к ст. Линза.

II Ли́нза (геол.)

форма залегания горных пород и руд в виде чечевицы с уменьшающейся к краям мощностью. Размеры Л. различны и колеблются от нескольких м длины и нескольких см мощности до 1 км и более длины и нескольких десятков м мощности. См. также Залегание горных пород.

III Ли́нза

акустическая, устройство для изменения сходимости звукового пучка (фокусировки звука (См. Фокусировка звука)). Подобно оптическим линзам, акустическая Л. ограничены двумя рабочими поверхностями и выполняются из материала, скорость звука в котором отлична от скорости звука в окружающей среде, с тем, чтобы показатель преломления n отличался от единицы. Для достижения наибольшей прозрачности Волновое сопротивление этого материала должно быть близко к волновому сопротивлению среды, а вязкие потери в нём - минимальны. Акустические Л. могут быть твёрдыми, жидкими и газообразными, в последних двух случаях твёрдая оболочка Л. должна обладать наибольшей прозрачностью. Для работы в жидких средах материалом Л. являются пластмассы (n = 0,5-0,8), хлороформ, четырёххлористый углерод (n = 1,3-1,4). Для работы в газах, например в воздухе, наряду с линзами, наполненными водородом или углекислым газом, применяются т. н. неоднородные акустические Л., объём которых заполнен шариками, сетками и т. п. Неоднородные рассеивающие воздушные Л. применяются для улучшения характеристик направленности громкоговорителей (См. Громкоговоритель). Твёрдые и жидкие Л. служат для получения звуковых изображений, для целей дефектоскопии (См. Дефектоскопия), медицинской диагностики, а также для концентрации ультразвука при различных его технологических и биологических применениях.

Лит.: Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., 2 изд., М., 1957.

Wikipedia

Линза

Ли́нза (нем. Linse, от лат. lens — чечевица) — деталь из прозрачного однородного материала, имеющая две преломляющие полированные поверхности, например, обе сферические или же одну плоскую, а другую — сферическую. В настоящее время всё чаще применяются и «асферические линзы», форма поверхности которых отличается от сферы. В качестве материала линз обычно используются оптические материалы, такие как стекло, оптическое стекло, кристаллы, оптически прозрачные пластмассы и другие материалы.

Термин «линза» используют также применительно к другим приборам и явлениям, действие которых на излучение подобно действию линзы, например:

  • плоские «линзы», изготовленные из материала с переменным показателем преломления, изменяющимся в зависимости от расстояния от центра;
  • линзы Френеля;
  • зонная пластинка Френеля, использующая явление дифракции;
  • «линзы» воздуха в атмосфере — неоднородность свойств, в частности показателя преломления (проявляется в виде мерцания изображения звёзд в ночном небе);
  • гравитационная линза — наблюдаемый на межгалактических расстояниях эффект отклонения электромагнитных волн массивными объектами;
  • магнитная линза — устройство, использующее постоянное магнитное поле для фокусирования пучка заряженных частиц (ионов или электронов) и применяющееся в электронных и ионных микроскопах;
  • изображение линзы, сформированное оптической системой или частью оптической системы. Используется при расчёте сложных оптических систем.
¿Qué es выпукло-вогнутый? - significado y definición